问题描述:
摩天大楼中一部直通高层的客运电梯,行程超过百米.电梯的简化模型如图1所示.考虑安全、舒适、省时等因索,电梯的加速度a随时间t变化的.已知电梯在t=0时由静止开始上升,a一t图象如图2所示.电梯总质最m=2.0xI03kg.忽略一切阻力.重力加速度g取I0m/s2.(1)求电梯在上升过程中受到的最大拉力F1和最小拉力F2;
(2)类比是一种常用的研究方法.对于直线运动,教科书中讲解了由v-t图象求位移的方法.请你借鉴此方法,对比加速度和速度的定义,根据图2所示a-t图象,求电梯在第1s内的速度改变量△v1和第2s末的速率v2;
(3)求电梯的最大速率.
最佳答案:
(1)由牛顿第二定律,有 F-mg=ma,由a─t图象可知,F1和F2对应的加速度分别是a1=1.0m/s2,a2=-1.0m/s2则:
F1=m(g+a1)=2.0×103×(10+1.0)N=2.2×104N
F2=m(g+a2)=2.0×103×(10-1.0)N=1.8×104N
(2)通过类比可得,电梯的速度变化量等于第1s内a─t图线下的面积:△υ1=0.50m/s
同理可得,△υ2=υ2-υ0=1.5m/s
υ0=0,第2s末的速率υ2=1.5m/s
(3)电梯的最大速率:v=
11+(10−1) |
2 |
答:(1)电梯在上升过程中受到的最大拉力F1是2.2×104N,最小拉力F2是1.8×104N.
(2)电梯在第1s内的速度改变量△υ1是0.50m/s,第2s末的速率υ2是1.5m/s.
(3)电梯的最大速率是10m/s