利用余弦定理证明:平行四边形对角线长的平方和等于四边长的平方和

利用余弦定理证明:平行四边形对角线长的平方和等于四边长的平方和

问题描述:

利用余弦定理证明:平行四边形对角线长的平方和等于四边长的平方和如题



最佳答案:

方法一

解:设平行四边行相邻两边分别为a,b.

由余弦定理得:BD^2=a^2+b^2-2abCOSA AC^2=a^2+b^2-2abCOSB ‘’

两式相加得:BD^2+AC^2=2a^+2b^2-abCOSA-2abCOSB

因为ABCD是平行四边形 所以-2abCOSB=2abCOSA

所以BD^2+AC^2=2a^+2b^2

即平行四边形对角线的平方和等于四边长的平方和

方法二

解:设平行四边形 边长分别是 a,和 b 对角线是c 和d,

两相邻角是 A ,B 则有A+B=180

所以cosA+cosB=0 

应用余弦定理 c^2=a^2+b^2-2ab*cosA 

(1) d^2=a^2+b^2-2ab*cosB 

(2) (1)+(2)得 c^2+d^2=2(a^2+b^2)

联系我们

联系我们

查看联系方式

邮箱: 2643773075@qq.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部