△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°则∠DGB是

△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°则∠DGB是

问题描述:

如图,己知三角形ABD全等三角形ADE,BC的延长线交DA于点F,交DE于点G,E



最佳答案:

解法一:

解:

∵△ABC≌△ADE

∴∠ACB=∠E=105°

∴∠ACF=180°-105°=75°

在△ACF和△DGF中,∠D+∠DGB=∠DAC+∠ACF

即25+∠DGB=16°+75°

解得∠DGB=66°

解法二:

∵△ABC≌△ADE

∴∠ACB=∠E=105°

∴∠ACF=180°-105°=75°

∵∠DAC=16°

∴∠DFG=∠CFA=180°-75°-16°=89°

又∵∠D=25°

∴∠DGB=180°-25°-89°=66°


  
联系我们

联系我们

查看联系方式

邮箱: 2643773075@qq.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部