问题描述:
已知实数a,b,c满足(a-b)2+b2+c2-8b-10c+41=0.(1)分别求a,b,c的值;
(2)若实数x,y,z满足
xy |
x+y |
yz |
y+z |
c |
a |
zx |
z+x |
c |
b |
xyz |
xy+yz+zx |
最佳答案:
(1)已知等式整理得:(a-b)2+(b-4)2+(c-5)2=0,
∴a-b=0,b-4=0,c-5=0,
解得:a=b=4,c=5;
(2)把a=b=4,c=5代入已知等式得:
xy |
x+y |
1 |
x |
1 |
y |
1 |
4 |
yz |
y+z |
5 |
4 |
1 |
y |
1 |
z |
4 |
5 |
zx |
z+x |
5 |
4 |
1 |
x |
1 |
z |
4 |
5 |
∴
1 |
x |
1 |
y |
1 |
z |
1 |
8 |
则原式=
1 | ||||||
|