实数难题设2006x³=2007y³=2008z³,xyz>0,且³√(2006x²+2007y&su

实数难题设2006x³=2007y³=2008z³,xyz>0,且³√(2006x²+2007y²=2008z²)=³√

问题描述:

实数难题
设2006x³=2007y³=2008z³,xyz>0,且³√(2006x²+2007y²=2008z²)=
³√2006+³√2007+³√2008 求 1/x + 1/y + 1/z的值.

最佳答案:

设2006x³=2007y³=2008z³=t^3³√(2006x²+2007y²+2008z²)=³√2006+³√2007+³√2008 可化为³√(t^3/x+t^3/y+t^3/z)=t/x+t/y+t/z进一步化简的 t³√(1/...

联系我们

联系我们

查看联系方式

邮箱: 2643773075@qq.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部