问题描述:
已知1 |
x |
1 |
y |
最佳答案:
1 |
x |
1 |
y |
设x+y+z=k,则z=k-x-y,
代入x2+y2+z2=2xyz=x2+y2+(k-x-y)2=2xy(k-x-y)=2(x+y)[k-(x+y)],(由①)
2(x+y)2-2xy+k2-2k(x+y)=2k(x+y)-2(x+y)2,
4(x+y)2-(4k+2)(x+y)+k2=0,
△ |
4 |
x+y=(x+y)(
1 |
x |
1 |
y |
∴x+y=
(2k+1)+
| ||
4 |
2k+1+
4k+1 |
4k+1 |
化为k≥=7.5,或k<7.5且4k2-60k+225≤4k+1,
4k2-64k+224≤0,
k2-16k+56≤0,
∴k≥8-2
2 |
∴x+y+z的最小值是8-2
2 |
故答案为:8-2
2 |