问题描述:
金秋时节,桐乡杭白菊喜获丰收.某杭白菊经销商以每千克12元的价格购进一批鲜杭白菊,加工后出售,已知加工过程中质量损耗了40%,该商户对该杭白菊试销期间,销售单价不低于成本单价,且每千克获利不得高于成本单价的125%,经试销发现,每天的销售量y(千克)与销售单价x(元/千克)符合一次函数y=kx+b,且x=35时,y=41;x=40时,y=36.(1)求一次函数y=kx+b的表达式;
(2)若该商户每天获得利润(不计加工费用)为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元/千克时,商户每天可获得最大利润,最大利润是多少元?
(3)若该商户每天获得利润不低于384元,试确定销售单价x的范围.
最佳答案:
(1)将x=35、y=41和x=40、y=36代入y=kx+b,得:
|
解得:
|
∴y=-x+76;
(2)∵这批鲜杭白菊的实际成本为
12 |
1-40% |
∴W=(x-20)(-x+76)=-x2+96x-1520=-(x-48)2+784,
又∵20≤x≤20×(1+125%),即20≤x≤45,
∴当x=45时,W最大值=775,
答:销售单价定为45元/千克时,商户每天可获得最大利润,最大利润是775元;
(3)根据题意,得:-(x-48)2+784≥384,
解得:28≤x≤68,
又20≤x≤45,
∴28≤x≤45.