已知等比数列{an}前n项和Sn=2n+k;数列{bn}是等差数列,其首项b1=1,公差为d,且其前n项的和Tn满足T7=14T2(1)求数列{an+bn}的前n项的和;(2)问是否存在正整数m,使得

已知等比数列{an}前n项和Sn=2n+k;数列{bn}是等差数列,其首项b1=1,公差为d,且其前n项的和Tn满足T7=14T2(1)求数列{an+bn}的前n项的和;(2)问是否存在正整数m,使得

问题描述:

已知等比数列{an}前n项和Sn=2n+k;数列{bn}是等差数列,其首项b1=1,公差为d,且其前n项的和Tn满足T7=14T2

(1)求数列{an+bn}的前n项的和;

(2)问是否存在正整数m,使得当n≥m时,总有an>bn(n∈N+)?若存在,求出m的最小值;若不存在,请说明理由.



最佳答案:

(1)由.又{an}是等比数列∴k=-1,则

得d=3.

的前n项和为

(2)当n=1时,a1=b1;当n=2时,

当n=3时,

当n=4时,

当n=5时,

∴当n≥5时,总有an>bn,所以存在自然数m,当n≥m时,总有an>bn.

m的最小值为5.

当n≥5时,

所以当n≥5时,总有an>bn.

联系我们

联系我们

查看联系方式

邮箱: 2643773075@qq.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部