数列极限的定义对于任意的ε,总是存在一个N,使得当n>N时,总是有|an-a|对于任意的ε总是存在一个N,使得当n>N时,总是有|an-a|N时总是有|an-a|

数列极限的定义对于任意的ε,总是存在一个N,使得当n>N时,总是有|an-a|对于任意的ε总是存在一个N,使得当n>N时,总是有|an-a|N时总是有|an-a|

问题描述:

数列极限的定义
对于任意的ε ,总是存在一个N,使得当n>N时,总是有 |an-a|
对于任意的ε 总是存在一个N,使得当n>N时,总是有 |an-a| N时总是有 |an-a|

最佳答案:

楼主的话有理,那样的话你只要根据N求ε就可以了,比如an=1/n,那么a肯定等于0,若存在N,则设n=N+1,当εε,命题不成立

联系我们

联系我们

查看联系方式

邮箱: 2643773075@qq.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部